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I 3.10 Quasi stationary distribution

Process not stationary = E(T)= jooG (n,ny)dn < o

a

Scale the Green function:

) G(n,n,)
) be(z,no)dz

a

This Is the quasi stationary distribution
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Figure 3.6: The stationary distribution, the gamma distribution, for the
logistic model with absorbing barrier at zero and parameters r = 0.1, K =
300 and o2 = 0.01 (solid line) together with the quasi-stationary distribution

with Ng = K obtained by adding demographic variance o3 = 1 to the model.
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I PVA — Population Viability Analysis

Viability = Probability that a population goes
extinct within a time interval.

P(T>t,)>1-¢,

Full PVA:
1. Set up a model

2. Estimate parameters from time series &
demographic info if available.

3. Evaluate uncertainty in estimates & possible
changes in parameters.
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I 3.11.2 Exponential approximation

Example:
E(T)=2000 yrs

P(T <500) ~1-e™*™ =0.2212

P(T < 200) ~ 0.0952
P(T <100) ~ 0.0488
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Figure 3.8: The carrying capacity required to obtain a probability of extinc-
tion at most 0.1 within a 100 years period for the logistic type of model.
There is one graph for four different values of the environmental variance.
The demographic variance is 1 and the initial population size is at the car-

rying capacity.




I 3.12 Autocorrelations




Fig 3.12, p. 100
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Figure 3.12: Simulations of the final decline from the carrying capacity to
extinction in the logistic model with parameters r = 0.2, K = 1000, o2 = 1
and ¢2 = 0.01.




I 3.15 Autocorrelated noise

= p(h)=p(-h)=corr(InA,,InA,,,)=corr(S,S,.,)

where ¢* =Var(s,)

Var(X,|x,)=Var(S,+S,+S,+...+S,,)
=to’ +2(t—1),0(1)0'2 +2(t—2),0(2)62 +...+2,0(t—1)02

:aztit(z:l)p(i)_zazgip(i)




I 3.15 Autocorrelated noise

For a process with autocorrelated noise, we get
the correct expectation and variance for X, | X,

If we approximate it with a process with white
noise with variance e

ngp(i):az{l+22p(i)}
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Fig 3.14, p. 106 wl
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Figure 3.14: The same model as in the lower panel of Fig.3.13 with v = 0.8
but showing the processes separately for 1000 years. The upper panel i=
the process with autocorrelated noise and the lower panel is the diffusion

approximation.
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Fig. 3.15, p. 107
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Figure 3.15: Simulations of the continuous processes (left panels) of the
logistic type during 200 years with » = 0.1, K = 1000, and 2 = 0.01
with noise process Z; of the Ornstein-Uhlenbeck type shown together with
histograms (right panels) of the stationary distributions based on 30000 years.
In the upper panel 3 = 0.3, in the middle 3 = 2 and in the lower § = 100.
In all simulations w® = 3. In the process with # = 100 the noizse Z; is

practically white noise.
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